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SUMMARY 
A numerical method for the dynamic simulation of the hydrodynamic interaction among particles in Stokes 
flow is developed. The method couples the quasi-static Stokes equations for the fluid with the equilibrium 
equations for the particles. The boundary element method is used to represent the velocity at a general field 
point in terms of surface velocities and stresses. However, neither the stresses nor the velocities are assumed 
to be known on the surface of the particles. Kinematic equations relating the linear and angular velocities at 
the centroids of the particles to the surface velocities are combined with the discretized boundary element 
equations and the equilibrium equations to generate a system of linear equations. The associated coefficient 
matrix is correspondent to the grand resistance matrix which relates the velocities of the particles to a given 
geometry. 

KEY WORDS Stokes flow Hydrodynamic interactions Suspension flows Two-phase flows Boundary element 
method 

INTRODUCTION 

The hydrodynamic interaction among immersed particles plays an important role in several 
problems of interest to scientists and engineers, including constitutive equation modelling, falling 
ball rheometry, pipeline transport of slurries, petroleum recovery, composite materials pro- 
cessing, blood flow and many more. The solution of the many-body problem is an essential 
component in the development of a predictive capability for particle flows even at  relatively dilute 
concentrations. Several theoretical investigations of dilute concentrations of suspensions have 
been performed including those of Einstein,' Batchelor,' Jeffrey and A c r i ~ o s , ~  Brenner; Brenner 
and O'Neill' and Hinch.6 In particular, Brenner and O'Neill' developed the concept of the grand 
resistance matrix multiparticle systems, which related the particle velocities to the hydrodynamic 
interaction forces at equilibrium. The extension of these theories to particles of complex shape has 
been limited because of the requirement of a detailed knowledge of the hydrodynamic interaction 
among the particles. 

Several important advancements in the numerical simulation of the many-body problem have 
evolved over the past several years. Kynch,' Hocking' and Mazur and van Saarloos' used the 
method of reflections to determine the mobility functions (the inverse of the grand resistance 
matrix) for multiple-sphere systems. Gantos et ~ l . , ' ~  using a boundary collocation method based 
on the expansion of the Stokes equations into appropriate eigenfunctions, studied the three-body 
problem. Most recently, Durlofsky et al.," developed a method to calculate the resistance 
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matrices for the multibody problem that accounted for the near-field lubrication effects. However, 
all of these methods are limited to systems of high symmetry to reduce the numbers of unknowns. 
Ingber12 developed a method based on the boundary element method (BEM) which coupled the 
Stokes equations for the fluid with the rigid body equations of motion for the particles. Although 
the method was not limited to simple geometries and could be extended to the many-body 
problem, it was computationally expensive because of the stringent stability requirements 
demanded by the rigid body equations of motion. Tran-Cong and Phan-Thien’ also developed a 
method based on the BEM to derive the grand resistance matrix. However, it was necessary for 
them to invert a fully populated matrix, making the use of this method expensive for dynamic 
simulation. 

The present study is based on a quasi-steady analysis of multiple-particle Stokes flow 
interactions using the BEM. The present method differs from the author’s previous work12 in that 
the solution of the boundary element equations does not require knowledge of the velocity field. 
The velocity field is determined as part of the solution vector. In the quasi-steady analysis the 
rigid body equations of motion are circumvented and hence the accompanying stability problems 
are eliminated. Much larger time steps can be taken, making the present method computationally 
efficient. A wide variety of example problems are considered to show the advantages of the 
present method. 

FORMULATION FOR MULTIPLE PARTICLES 

We consider creeping flow in domain R with boundary r. The boundary r can be decomposed 
into the following components: 

N 
r = rf + 1 Ti, 

i = l  

where r, represents the fixed portion of the boundary (either real or imaginary) and Ti represents 
the surface of the ith particle. (For exterior flows Tf may not be present.) The governing 
differential equations in terms of the dimensionless perturbed fluid velocity ui and the pressure p 
are given by 

where Cartesian tensor notation is employed. Equation (2) can be recast in integral form by 
considering a weighted residual statement of the differential equations with weighting functions 
given by the fundamental solutions for the pressure and velocity.’2* 14, l 5  The fundamental 
solution for the velocity field and the associated fundamental solution for the stress field are given 
by 

1 
8nr 

ut (< ,  x) = -- (6, + r , i  r ,  j), 

-- 3 r,i  r , j  r ,k  4*. (5, x)  = -- ~ 

4n r 2  ’ Elk 

(3) 

(4) 

where r is the distance between < and x, 6, is the Dirac delta function and the comma denotes 
differentiation with respect to the appropriate Cartesian co-ordinate. The resulting boundary 
integral equation (BIE) is given by 

,. 
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where the fk are the components of the traction along the surface r and the nj  are the components 
of the unit outward-normal vector to the boundary I-. The coefficient tensor cij can be determined 
from the geometry or by integrating qzji over r.12 

The BIE is discretized by subdividing the boundary into boundary elements within which the 
velocity and stress components are given polynomial approximation with the use of Lagrangian 
shape functions. That is, within the eth element we approximate ui and f i  as follows: 

n 

j =  1 

where and fFj  represent the values of the ith components of velocity and stress respectively at 
the jth node within the eth element and the Nj(x) are the shape functions of the appropriate order. 
Using these approximations we write the discretized form of equation (5) as follows: 

NE NE 

cij(t)uj(t) + zl jre qk*ji(t, X)UElNl(X)nj(X)dr = zl Ire u ~ ( t ,  x ) fg l~ , (x )d r ,  (8) 

where NE is the number of elements and repeated indices imply summation. By placing the field 
point 5 in equation (8) successively at the M nodes within the boundary elements, the following 
3 M linear algebraic equations are generated: 

where fij and j;" represent the values of the components of velocity and stress respectively at thejth 
node. 

In traditional boundary element methods in each co-ordinate direction either the stress 
component or velocity component is specified at the collocation nodes by the boundary 
conditions and equation (9) can be rearranged to solve for the remaining unknowns. In the 
present method the velocity components are specified along rf, the fixed portion of the 
boundary. However, along the particle boundaries Ti neither the stresses nor the velocities are 
known. Under the assumption that the particles are rigid, the velocities on the surface of the 
particles can be related to the six components of linear and angular velocity at the centroids of the 
particles through a 3M x 6 N  kinematic matrix [Kjr]. That is, 

where { U , )  represents the velocities (linear and angular) at the centroids of the elements. The 
algebraic system is closed in the present quasi-static analysis by enforcing the equilibrium 
equations. That is, we demand that the resultant forces and moments on the particles generated 
by the surface stresses and any body forces equal zero. This neglect of the particle accelerations is 
consistent with the neglect of the acceleration within the fluid. The equilibrium equations for the 
ith particle are given by 

jr, nvadr  + bi = 0, 

Ir, ( 4  - 4%" -a)dl- = 0, 

(1 1) 

(12) 

where a is the total stress tensor, bi is the body force acting on the ith particle and qi is the 
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location of the centroid of the ith particle. These equations can be represented symbolically in 
matrix form in terms of the surface tractions as follows: 

where [Mjj] is a 6 N  x 3M matrix. Combining equations (9), (10) and (13) we obtain 

C G ~ ~ I  - C H ~ ~ I C K ~ ~ I  
0 

This formulation is similar to the grand resistance matrix formulation in that the particle 
velocities are determined directly as a function of the geometry. However, it also contains 
information concerning the stress distribution on the surface of the particles. It has the advantage 
over previous grand resistance matrix formulations using the BEM in that no matrices are 
inverted in order to eliminate the stresses. 

Once the particle velocities are determined using equation (14), the particles can be 
repositioned using a variety of integrators. 111 the example problems discussed in the next 
section a fifth-order variable-time-step Runge-Kutta method is used. 

RESlJLTS 

The boundary element portion of the numerical algorithm is benchmarked for both the exterior 
and interior problem. For the exterior problem we first consider the case of two identical spheres 
sedimenting side by side and compare the boundary element results with analytical results. We 
next consider horizontal chains of sedimenting spheres and compare the boundary element 
results with numerical results of Gantos et al.” For the interior problem the boundary element 
results are benchmarked by comparison with analytical results for a sphere in a cylinder under 
both the influence of gravity (no mean flow) and the influence of a mean Poiseuille flow (no 
gravity). Next several dynamic simulations are considered, including the sedimentation of systems 
of three spheres, a comparison of sedimenting spheroids and rods, the interaction of a sedimen- 
ting sphere with a neutrally buoyant spheroid or rod, and the movement of a spheroid through a 
contraction in Poiseuille flow. 

Static benchmarks 

The first set of static benchmark tests consists of two identical spheres sedimenting side by side. 
This problem is considered since the BEM results can be compared with the analytical results of 
Stimson and JeffreyI6 and Goldman et a/.” It is convenient to present the results in terms of 
dimensionless quantities. The characteristic length scale is given by the radius of the sphere, a, and 
the characteristic velocity is given in terms of the terminal sedimentation velocity U ,  of an isolated 
sphere: 

(15) 
where ps is the density of the sedimenting particles, pf is the density of the suspending fluid, g is 
the gravitational constant and p is the dynamic viscosity. The drag correction factor 2 and the 
non-dimensional angular velocity o are then defined by 

u, = W P ,  - Pf)9/9P> 

i = U*JU,  o = aGJU,,  (16) 
where U is the sedimenting velocity of the spheres and 6 is the dimensional angular velocity. In 
this static benchmark test we consider constant, linear and quadratic approximations for the 
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velocities and the stresses. In all cases the geometry is given quadratic approximation. The 
boundary element results and the associated absolute errors are shown for a centre-to-centre 
separation of 3.0862a in Table I and for a centre-to-centre separation of 2.2552~ in Table 11. The 
results are less accurate for the case where the centre-to-centre separation is smaller because not 
only are the stress gradients larger but also, since collocation points on one particle are closer to 
boundary elements on the other particle, the quadrature errors are larger owing to the singular 
nature of the fundamental solutions. Nevertheless, even when the gap distance between the two 
particles is approximately one-quarter of the radius, the boundary element method provides 
accurate results for all the discretizations shown in the tables. The discretizations using linear and 
quadratic elements yield slightly more accurate results than the constant elements. However, the 
improvement in the accuracy with the higher-order elements is not as large as might be expected 
considering previous boundary element studies using p-adaptive grid optimization.”* There 
are two plausible explanations for the relatively small improvement. First, for all but the constant 
elements, collocation nodes are placed along the interelement boundaries where the Co- 
Lagrangian elements used in this study have discontinuous slopes. At low Reynolds numbers the 
flow field is sensitive to small changes in geometry, and by placing collocation nodes along the 
interelement boundaries the effects of the discontinuous slopes are accentuated. Secondly, since 
the particles are in rigid body motion with moderate rotation rates, the velocity fields within the 
boundary elements have relatively small variation. Since the improvement in the solution was 

Table I. BEM results for the drag correction factor and the non-dimensional angular velocity for the case of 
two identical spheres falling side by side with a centre-to-centre separation of 3.0862~~. The analytical results 

are given by i = 0.7945 and w = 0.07750 

Absolute Absolute Degrees Function 
of freedom interpolation 1 error w error 

32 
96 

192 
44 

160 
100 
204 

Constant 0.7924 0.002 1 0.07845 
Constant 0.7934 0.001 1 0.078 17 
Constant 0.7942 OW03 0.078 10 
Linear 0.7926 0.00 19 0.07848 
Linear 0.7942 0.0003 0.07808 
Quadratic 0.7937 OW08 0.078 14 
Quadratic 0.7944 o.oO0 1 0.07785 

~~ 

000095 
000067 
0-00060 
0.00098 
0.00058 
ON)064 
0.00035 

Table 11. BEM results for the drag correction factor and the non-dimensional angular velocity for the case 
of two identical spheres falling side by side with a centre-to-centre separation of 2.2552~~. The analytical 

results are given by I = 0.7327 and w = 0.1314 

Degrees Function 
of freedom interpolation 

Absolute Absolute 
1 error w error 

32 
96 

192 
44 

160 
100 
204 

Constant 0.7302 0.0025 0.1356 0.0042 
Constant 0.7308 0.00 19 0.1348 00034 
Constant 0.73 16 OW09 0.1339 09025 
Linear 0.7304 0.0023 0.1356 00042 
Linear 0.73 19 OW08 0.1336 0.0022 
Quadratic 0.73 12 00015 0.1 340 00026 
Quadratic 0.7322 0.0005 0-1 329 00015 
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only moderate when using the higher-order elements, constant elements were chosen for the 
dynamic simulations because of the economy they provided in terms of the CPU costs. An 
analysis of these CPU costs is provided with the next set of benchmark tests. 

The next set of static benchmark tests consists of horizontal chains of up to 15 evenly spaced 
spheres sedimenting under the influence of gravity. The ratio of the centre-to-centre spacing to the 

Sphere number 

x x Present results 
0-0 Gantos et al." 

Sphere number 

Figure 1 .  (a) Vertical drag reduction factors and (b) angular velocities for horizontal chains of spheres 



HYDRODYNAMIC INTERACTION AMONG PARTICLES IN STOKES FLOW 797 

sphere diameter is two. Comparisons between the present BEM results and the results of Gantos 
et al." are shown in Figure 1 for the vertical drag correction factor A and the non-dimensional 
angular velocity o. Results for only half of the chain are shown because of the symmetry. The 
central sphere is designated b y j  = 0. The maximum discrepancy between the two sets of results is 
less than 0.2% for the drag reduction factor /z and less than 3.2% for the angular velocity o. On 
the basis of the previous benchmark and similar convergence tests, each sphere was discretized 
into 16 superparametric elements in which the geometry was given quadratic approximation and 
the velocities and stresses were assumed to be constant within the elements. The CPU times ran 
from 3-7 CPU seconds for the three-sphere case up to 162 CPU seconds €or the 15-sphere case on 
a Cray XMP timesharing system. A plot of the degrees of freedom (16 per sphere) versus the total 
CPU time is shown in Figure 2 for this example. It is seen that in the range from three to 15 
spheres there is a quadratic scaling between degrees of freedom and the CPU cost. The major 
routines associated with the method are the numerical quadrature routine and the Gaussian 
elimination routine. Hence the operation count (OC) is estimated by 

OC = C l M 2  + C , ( M  + 6 N ) 2  + C 3 ( M  + 6N),, (17) 

where M is the number of degrees of freedom, N is the number of particles and C, , C, and C ,  are 
constants. The first term on the right-hand side of equation (17) is associated with the quadrature 
routine and the second two terms are associated with the Gaussian elimination routine. In the 
light of the CPU times shown in Figure 2, we can conclude that C, must be much larger than C,. 
This is substantiated by the fact that in all cases over 85% of the CPU time was spent in forming 
the linear system of equations. Presumably, for very large numbers of particles the cubic scaling 
would eventually predominate. 

The next set of static benchmarks consists of a sphere inside a cylinder (Figure 3). The length of 
the cylinder is three times the diameter, although longer cylinders were considered without any 

I 
10 100 1 

Degrees of Freedom 

Figure 2. Relationship between degrees of freedom and the CPU cost for the case of the horizontal chains of spheres 
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Figure 3. Problem geometry of a ball (diameter 2a) sedimenting a distance b off the axis of a cylinder (diameter 2 R )  

noticeable change in the results. First we consider spheres of varying diameter sedimenting along 
the centreline of the cylinder. We compare the wall correction factor K given by 

drag in the presence of the outer cylinder 
drag in an infinite medium 

K =  

with the analytical results given by Happel and Brenner'* in Figure 4. In all cases the sphere was 
discretized with 16 superparametric boundary elements and the cylinder was discretized with 186 
superparametric boundary elements. As seen in Figure 4, errors increased with increasing sphere 
diameter, with a maximum error of 5.4% for a /R  = 05.  Next we consider eccentric positioning of 
the sedimenting spheroid within the cylinder as characterized by the off-centre distance h for the 
ratio a /R  = 0.135. The ratio of the wall correction factor for b/R = 0 to the wall correction factor 
for h/R # 0 as a function of b/R is shown in Figure 5. The results are compared with a theoretical 
prediction proposed by Graham et aLZ2 The present results match the theoretical predictions 
quite well. As the ball is moved off centre the sedimentation velocity is actually increased despite 
the fact that the ball is closer to the wall. The reason for this is that as the ball moves off centre the 
rotation rate is increased, which enhances the sedimentation rate. Eventually, as the eccentricity is 
increased the close proximity of the wail will cause the sedimentation velocity to decrease. The 
eccentric position at  which the drag is minimized is approximately 0.4. This matches the 
analytical prediction for small  ball^.^^^^^ Finally we consider the case of a neutrally buoyant 
sphere moving under the influence of a Poiseuille flow inside a cylinder. The relationship between 
the lateral position and the velocity of the centre of the sphere, U,, normalized by the mean 
velocity V,,, in the undisturbed Poiseuille flow for the ratio a /R  = 0.13, is compared with the 
analytical results of Bungay and BrennerZ4 in Figure 6. Again the present static boundary element 
analysis matches the theory quite well. 
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Figure 4. Wall correction factors for a sphere sedimenting along the axis of a cylinder 
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Figure 5. Ratio of the wall correction factor for the ball sedimenting along the axis of a cylinder ( b / R  = 0) to the wall 
correction factor for the ball sedimenting off centre ( b / R  > 0) for the case a/R = 0,135 
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Dynamic simulations 

We first consider sedimenting systems of three initially horizontal identical spheres. For each 
system the initial distance between the centres of the two outer spheres is six diameters and the 
relative position of the middle sphere is given in terms of the parameter C = B/A,  where B is the 
centre-to-centre distance between the central sphere and the right outer sphere and A is the 
centre-to-centre distance between the central sphere and the left outer sphere. Configurations 
were run with values of C given by 1.1, 1.4, 1.5, 1.6 and 1.7. The trajectories for these systems are 
shown in Figure 7. This problem was investigated numerically by Gantos et a l l 0  and Durlofsky 
et a1.I' and experimentally by Jayaweera et aLZ5 Although Gantos et al. provided only snapshots 
which showed the relative orientations and rotations of the spheres, the present boundary 
element simulations match the results of Gantos et al. qualitatively. In certain cases, after the 
systems have sedimented for several diameters, two of the three spheres approach each other and 
essentially form a stable doublet. In these situations, because of the increase in the drag reduction 
factor," the two spheres will separate from the third sphere. We number the spheres from left to 
right in their initial horizontal positions. As seen in Figure 7, sphere 1 is left behind for C = 1.1  
and C = 1.4, sphere 3 is left behind for C = 1.5 and sphere 2 is left behind for C = 1.6 and C = 1.7. 
These results have previously been observed numerically by Gantos et al. and experimentally by 
Jayaweera et al. Durlofsky et al. also considered the case for C = 1.4. They used two variants of a 
simulation based on a reflection method, one which ignored the near-field lubrication effects and 
one which included the near-field lubrication effects. The trajectories of the two simulations were 
essentially the same through z = -600, at which point the trajectories diverged. Their more 
accurate method did not show sphere 1 lagging behind. The trajectory shown in Figure 7(b) is 
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Figure 7. Chains of three unequally spaced spheres sedimenting under the influence of gravity. X and Z are measured in 
units of the sphere radius a and the increment between each plot symbol is 21.22 dimensionless time units where the 

characteristic time unit is given by a /U,  

essentially the same as that of Durlofsky et a/. through sedimentation of 600 radii. As they 
mention in their paper, it is not surprising that the trajectories differ after some time because of 
the fact that the flow field is sensitive to small changes in geometry, especially for Stokes flow. 

The next dynamic simulation considers the sedimentation of spheroids and rods. Spheroids 
have long been used to approximate rodsz6 because of the simplification in the analysis that 
spheroids allow. We consider prolate spheroids and rods of aspect ratio 2 with an initial centre- 
to-centre spacing given by R = 2.5 (Figure 8). The trajectories and orientations for the right 
particle of a pair of initially vertical spheroids as calculated by the present method are compared 
with the reflection results of Kimz7 in Figure 9. The two methods provide essentially the same 
results. These trajectories and orientations are compared with the trajectories and orientations 
for sedimenting rods. In the first case the rod of aspect ratio 2 is of the same length as the spheroid. 
It is seen in Figure 9(a) that the trajectory for the rod is quite different from that of the spheroid. 
The difference can be attributed in large part to the extra surface area of the rod compared to the 
spheroid. In the second case the rod is again given aspect ratio 2 but in this case the length of the 
rod is chosen so that the surface area is the same as that of the spheroid. The trajectory is closer to 
that of the spheroid than the longer rod but is still significantly different. In all cases the 
trajectories are periodic because of the symmetry in the Stokes equations. The particles rotate 90" 
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Figure 8. Problem geometry of two inclined spheroids (rods) sedimenting under the influence of gravity 

in one half-period as they move apart and then follow a symmetric path during the next 90" of 
rotation as they move towards each other to complete the period. Normalizing the period for the 
spheroid to 1, the period of the long rod is 0517 and the period of the shorter rod is 0.810. That is, 
the rotation rate of both rods is greater than that of the spheroid. The rotation rate is more 
sensitive to the shape differences between the rod and the spheroid than is the sedimenting 
velocity. 

We next consider a system containing a sedimenting sphere and a neutrally buoyant spheroid 
or rod of aspect ratio 2 (Figure 10). This problem was first considered by IngberI2 using a 
boundary element method coupled to the rigid body equations of motion. Because the present 
method does not possess the severe stability problems associated with the rigid body equations of 
motion, especially as the particles approach each other, the present method can utilize much 
larger time increments, thus making it far more efficient. Although the amount of savings depends 
on how close the particles come to each other during the simulation and the time-stepping 
algorithm, CPU savings in excess of 10 times were realized over the author's previous method. 
The positions of the centres of the particles for the system containing the sedimenting sphere and 
the neutrally buoyant spheroid are shown in Figure 11. The motion of the sedimenting sphere 
causes the neutrally buoyant particle to move vertically downwards and to rotate counter- 
clockwise. Initially, both particles move horizontally away from each other. After the centre of the 
sedimenting particle passes the vertical position of the centre of the spheroid, the two particles 
move horizontally towards each other as the spheroid is pulled into the wake of the sphere. The 
trajectories shown in Figure 11 are essentially the same as the author's previous results.12 As in 
the dynamic simulation for the sedimenting spheroids and rods, a comparison was made to 
determine the effect of approximating a rod with a spheroid. Both a neutrally buoyant rod of 
aspect ratio 2 with the same length as the spheroid and a neutrally buoyant rod of aspect ratio 2 
with the same surface area as the spheroid were again considered. These trajectories are not 
shown in Figure 10 because they are essentially the same as the spheroid trajectories shown in the 
figure. The maximum discrepancy in the vertical position, the horizontal position and the angular 
rotation between the spheroid and the longer rod was 0.7%, 0.07% and 3.5% respectively. The 
maximum discrepancy in the vertical position, the horizontal position and the angular rotation 
between the spheroid and the shorter rod was 03%, 007% and 2*5'/0, respectively. The difference 
in the trajectories is slightly smaller when comparing the rod with equivalent surface area to the 
spheroid. Nevertheless, unlike the previous simulation containing two sedimenting particles, very 
little error is introduced here by approximating a rod with a spheroid. 

The final dynamic simulation considers a spheroid moving through a contraction under the 
influence of a Poiseuille flow. An abrupt contraction connects the upstream cylinder of diameter 8 
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Figure 10. Problem geometry for a system composed of a sedimenting sphere (S) and a neutrally buoyant particle (NB) 

N 

‘2.2 2.4 2.6 2.8 3 
I 1 I 1 1 

X 

Figure 11. Trace of the locations of the centres of the sedimenting sphere ( + ) and the neutrally buoyant particle ( x ). 
The increment between each plot symbol is 0.265 dimensionless time units where the characteristic time unit is given 

by alu, 

with the downstream cylinder of diameter 2. The upstream centreline velocity is 1. Prolate 
spheroids of aspect ratio 2 and length 1 are placed at three off-centre locations 6 units upstream of 
the contraction. The trajectories and orientations at 1 s intervals are shown in Figure 12. The 
spheroids rotate so that the major axis is almost horizontal as they move through the contraction. 
Once through the contraction, the spheroids undergo periodic rotational motion in a similar 
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Figure 12. Spheroid moving through a contraction under the influence of a Poiseuille flow: (a) initial position x=6, 
y =  1.5; (b) initial position x=6, y=2Q (c) initial position x=6, y=2.5. The increment between each plot symbol is 1.0s 

fashion to the Jeffery orbits of ellipses in Couette The length of time the spheroid takes to 
make it through the contraction increases with its initial distance off the centreline. As seen in 
Figure 11, the particle with centroid originally at y = 1-5 took approximately 6 s to pass through 
the contraction, the particle with centroid originally at y = 2.0 took between 7 and 8 s to pass 
through the contraction, and the particle with centroid originally at y = 2.5 took over 10 s to pass 
through the contraction. Although there are no experiments with which to compare these results, 
they appear to be reasonable. 

DISCUSSION 

A numerical method which couples the Stokes equations for the fluid with the equilibrium 
equations for the particles has been developed for the dynamic simulation of the hydrodynamic 
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interaction among immersed particles in Stokes flow. The Stokes equations are solved using the 
boundary element method, which places no restrictions on the complexity of the geometry. The 
current formulation has two improvements over previous boundary element formulations. First, 
no matrices need be inverted in order to obtain an explicit expression for the surface tractions, 
and secondly, no stability problems have been encountered with the variable-time-step 
Runge-Kutta time integrator. These two improvements are key ones in making the present 
method viable for dynamic simulations. The method can be applied to both the exterior and 
interior problem (with or without mean flow) containing buoyant, neutrally buoyant and/or 
sedimenting particles. 

In two of the example problems a comparison was made between spheroids and rod-like 
particles to determine the suitability of approximating rods with spheroids. In the case of the 
sedimenting particles there were significant differences between the trajectories of the spheroidal 
particles and the rod-like particles. These differences were mainly due to the variance in the 
rotation rates. However, in the case of the sedimenting sphere interacting with the neutrally 
buoyant rod or spheroid, the trajectories were essentially the same. This suggests that, to a large 
extent, the neutrally buoyant particle was simply moving with the flow field induced by the 
sedimenting sphere. 
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